Assessment of nose protector for sport activities: finite element analysis.

نویسندگان

  • Neide Pena Coto
  • Josete Barbosa Cruz Meira
  • Reinaldo Brito e Dias
  • Larissa Driemeier
  • Guilherme de Oliveira Roveri
  • Pedro Yoshito Noritomi
چکیده

There has been a significant increase in the number of facial fractures stemming from sport activities in recent years, with the nasal bone one of the most affected structures. Researchers recommend the use of a nose protector, but there is no standardization regarding the material employed. Clinical experience has demonstrated that a combination of a flexible and rigid layer of ethylene vinyl acetate (EVA) offers both comfort and safety to practitioners of sports. The aim of the present study was the investigation into the stresses generated by the impact of a rigid body on the nasal bone on models with and without an EVA protector. For such, finite element analysis was employed. A craniofacial model was constructed from images obtained through computed tomography. The nose protector was modeled with two layers of EVA (1 mm of rigid EVA over 2 mm of flexible EVA), following the geometry of the soft tissue. Finite element analysis was performed using the LS Dyna program. The bone and rigid EVA were represented as elastic linear material, whereas the soft tissues and flexible EVA were represented as hyperelastic material. The impact from a rigid sphere on the frontal region of the face was simulated with a constant velocity of 20 m s(-1) for 9.1 μs. The model without the protector served as the control. The distribution of maximal stress of the facial bones was recorded. The maximal stress on the nasal bone surpassed the breaking limit of 0.13-0.34 MPa on the model without a protector, while remaining below this limit on the model with the protector. Thus, the nose protector made from both flexible and rigid EVA proved effective at protecting the nasal bones under high-impact conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Dimensional Finite Element Analysis of Stress Intensity Factors in a Spherical Pressure Vessel with Functionally Graded Coating

This research pertains to the three-dimensional (3D) finite element analysis (FEA) of the stress intensity factors (SIFs) along the crack front in a spherical pressure vessel coated with functionally graded material (FGM). The vessel is subjected to internal pressure and thermal gradient. The exponential function is adopted for property of FGMs. SIFs are obtained for a wide variety of crack sha...

متن کامل

Damage Assessment using an Inverse Fracture Mechanics approach

This paper studies the application of an inverse methodology for problem solving in fracture mechanics using the finite element analysis. The method was applied to both detection of subsurface cracks and the study of propagating cracks. The procedure for detection of subsurface cracks uses a first order optimization analysis coupled with a penalty function to solve for the unknown geometric par...

متن کامل

Minimization of the Sheet Thinning in Hydraulic Deep Drawing Process Using Response Surface Methodology and Finite Element Method

In most of the sheet forming processes, production of the parts with minimum thickness variation and low required force is important. In this research, minimization of the sheet thinning and forming force in the hydraulic deep drawing process has been studied. Firstly, the process is simulated using the finite element method (FEM) and simulation model is verified using the experimental results....

متن کامل

Using the Taguchi Method for Experimental and Numerical Investigations on the Square-Cup Deep-Drawing Process for Aluminum/Steel Laminated Sheets

The effects of input parameters on the square-cup deep-drawing process for a two-layer aluminum/steel laminated sheet were investigated. Each layer was 0.7 mm thick, and the input parameters covered in the investigation were punch nose radius (PR), die shoulder radius (DR), the clearance between a punch and die (CPD), blank holder force (BHF), and layer arrangement (LA). The effects of the inpu...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental traumatology : official publication of International Association for Dental Traumatology

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2012